At the end of the course, the student will learn:
- the fundamentals of Statistical Learning, regression and classification
- linear and nonlinear regressions including splines
- Generalised Additive Models for both regression and classification problems
- regularisation techniques including Ridge regression and the Lasso
- the tree-based methods for regression and classification
- Support Vector Machine which is highly appreciated among Data Science and Machine Learning Community
- the difference between supervised and unsupervised learning methods